## Single particle tracking: principles and applications

Valeria Levi<br>Laboratorio de Dinámica Intracelular Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires vlevi12@gmail.com

## Why single molecule experiments?: An example

Studying folding of individual structural elements of RNA


1) Main 3D-conformation(s) of the molecule in different conditions 2 ) Quantification of the docking/undocking dynamics

## Why single molecule experiments?


solution $1 \mu \mathrm{M} \rightarrow 10^{15}$ molecules

What information are we missing in "cuvette" assays?

Studying RNA structure and dynamics


FRET trajectories

## donor

acceptor


## Bulk vs. single molecule measurements

Limitations of bulk measurements

+ molecules are not synchronized
\& average properties
Single molecule/particle assays
* Temporal evolution of each molecule/particle
* No need to synchronize processes
+ Detection of different populations
Disadvantages
+ More expensive equipments
+ Statistics!


## Dynamics of intracellular processes: Tracking



Protein function in the cellular context


## 1. Measuring motion in cells: FRAP

FRAP (fluorescence recovery after photobleaching) (Axelrod, 1976) and related techniques (FLIP, etc)


- Photodamage
- Photobleaching is not always irreversible


## 2. Measuring motion in cells: photoactivation

PA-GFP (photoactivatable GFP) photoconverts to a fluorescent specie after irradiation at $\lambda=400 \mathrm{~nm}$


## 3. Measuring motion in cells: FCS

FCS (fluorescence correlation spectroscopy)



- Low laser power
- Low concentration of fluorescent molecules
- Equilibrium


## Why single particle tracking experiments?



It is hard to study complex processes by "averaging" de behavior of multiple molecules

## Single particle tracking (SPT)

Position of the particle as a function of time
mechanism of motion

- interactions
- populations
- switches (no synchronization)



## Single particle tracking

1. Acquisition of single particle trajectories

2 .Quantitative analysis of single particle trajectories
3. Applications to intracellular transport
4. 3D particle tracking

## Image-based tracking techniques


-How can we obtain the trajectory of the particle from the movie?
-What is the accuracy on the position determination?

## Locating a particle with nanometer precision


point-like

deconvolution

x or y position

$$
r \cong \lambda / 2 N A
$$

$r=$ resolution
$\lambda=$ wavelength
NA = numerical aperture of the objective

> r~250 nm, visible light

## An example of a simple SPT method: FIONA

 (fluorescence imaging with nanometer accuracy)Imaging single fluorophore


The trajectory of the particle is then recovered after locating the particle in every frame of the movie

## Pattern-recognition tracking method



$$
\delta=\sum_{i, j} \sqrt{\left(I_{\text {image }}(i, j)-I_{\text {pattern }}(i, j)-B\right)^{2}} \cdot w(i, j)
$$

$B=$ background difference

$$
w(i, j)=\text { weight factor }=\sqrt{\left(I_{\text {pattern }}(i, j)-I_{\text {border }}\right)^{2}}
$$



## Improving SPT: Error in the particle position



Thompson et al. Biophys J (2002)

## Application: molecular motors



How the motor moves along the filament?


A simple answer from SPT experiments


## We can observe steps of motors in living cells!

Transport of melanosomes by myosin V


## Myosin-V in living cells




|  | in vitro | in cells |
| :---: | :---: | :---: |
| step size (nm) | 37 | $37.1 \pm 0.6$ |
| dwell time $(\mathrm{ms})$ | 70 | $200 \pm 40$ |

## Understanding the stepping mechanism

## Hand over hand

## Inchworm





## Probes for SPT experiments

In SPT experiments, probes may:

1) delay the motion of the particle
2) change the properties of the tracked molecule

| Probe | Size (nm) | Advantage | Disadvantage |
| :--- | :--- | :--- | :--- |
| fluorescent beads | $5-1000$ | brigthness | size |
| quantum dots | $10-20$ | brigthness, <br> spectra | blinking |
| fluorescent proteins | $10-20$ | endogenously <br> expressed | low brightness, <br> high concentration, <br> bleaching |
| single dye molecules | $0.5-10$ | size | low brightness, <br> bleaching (<10s) |
| nanoparticles | $20-50$ | last forever | low signal/noise |

## Single particle tracking

Motor stepping dynamics is just a very specific case..

How can we obtain information of complex intracellular processes?


Obtaining quantitative information from trajectories


## Calculation of the mean square displacement (MSD)

$$
\operatorname{MSD}(\tau)=(x(t)-x(t+\tau))^{2}+(y(t)-y(t+\tau))^{2}
$$



## What information can we obtain from MSD analysis?


"Single things" analysis means that we have to be extremely careful with the statistics


Applications: MSD analysis helps us to understand the mechanisms involved in organelle transport


Electron micrograph of mouse axon

Hirokawa, Science 1998
The conditions in which transport develops in cells are completely different from those of in vitro assays

Melanophores: a beautiful system to study transport


MSH dispersion

aggregation
Gelfand's lab - Wallin, bioscience-explained.org

## Organelle transport in living cells



3 families of motors


2 different tracks

- microtubules -actin filaments

How do these transport systems work together to target organelles to their final destination?

## Properties of myosin-V dependent transport



Why trajectories along actin filaments are not curvilinear?

## Properties of transport driven by myosin-V



| Condition | $\mathrm{MSD}_{0}\left[\mathrm{~nm}^{2}\right]$ | $\mathrm{A}_{1}\left[\mathrm{~nm}^{2}\right]$ | $\alpha$ |
| :---: | :---: | :---: | :---: |
| aggregation | $560 \pm 30$ | $1500 \pm 50$ | $1.37 \pm 0.03$ |
| dispersion | $600 \pm 30$ | $4100 \pm 1000$ | $1.33 \pm 0.02$ |

## Numerical simulations

How are these parameters related to the transport mechanism?


## The transport-diffusion model



Intersection: switching and detaching probabilities (Ali et al, PNAS 2007)
Lower number myosin motor/melanosome in aggregation (Gross et al. JCB, 2004)

Experimental

| Condition | $\mathrm{A}_{1}\left[\mathrm{~nm}^{2}\right]$ |
| :---: | :---: |
| aggregation | $1500 \pm 50$ |
| dispersion | $4100 \pm 1000$ |

Model

| diffusion time $(\mathrm{s})$ | $\mathrm{A}_{1}\left[\mathrm{~nm}^{2}\right]$ |
| :---: | :---: |
| 90 | $1700 \pm 300$ |
| 30 | $4000 \pm 600$ |

Diffusion increases the probability of switching to the microtubule network during aggregation

aggregation

During aggregation, organelles need to be transferred from the actin to the microtubule networks


## 3D Particle tracking

Making use of the z-sectioning capability of confocal and two-photon microscopes


1 z-plane $\sim 0.1-1 \mathrm{~s}$
Problems: low temporal resolution photobleaching

Alternative: spinning disk confocal microscopy


Eg: tracking ribonucleoprotein (RNP) time resolution: 0.3 s

## Image-based 3D methods



(Tilli and Massaccesi)

Problems:

- limited $z$ range
- error in ( $x, y$ ) increases when the particle moves far from the focal plane


## Image-based 3D methods: Bifocal imaging



## Particle tracking in a 2-photon microscope

## Motivations:

- particles could move far from the field of view
- widefield microscopy involves photobleaching
- Raster imaging is slow

2-photon


## Particle tracking in a 2-photon microscope



Mitochondria transport in NIH3T3 cells

data from Diana Wetzler
time resolution $=4.1 \mathrm{~ms}$ accuracy $=2 \mathrm{~nm}$


## 3D-Particle tracking in a 2-photon microscope

$(0,10,20)$ Z





$$
(0,10,0)
$$


X

$(0,2,0) \quad$ Z

(
more on 3D tracking at the Weber Conference

## More SPT talks in the Gregorio Weber Conference

## Thursday, December 15

| 12:00-12:20 | S2-1) LUCIANA BRUNO (Universidad de Buenos <br> Aires, Argentina) |
| :--- | :--- |
| $12: 20-12: 40$ | S2-2) ENRICO GRATTON (LFD, University of <br> California Irvine, USA) |
| $12: 40-13: 00$ | S2-3) ANDRE GOMES (Universidade Federal do Rio <br> de Janeiro, Rio de Janeiro, Brazil) |

